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ABSTRACT: There is a growing demand for understanding sources of predictability on subseasonal to seasonal (S2S) time

scales. Predictability at subseasonal time scales is believed to come from processes varying slower than the atmosphere such

as soil moisture, snowpack, sea ice, and ocean heat content. The stratosphere as well as troposphericmodes of variability can

also provide predictability at subseasonal time scales. However, the contributions of the above sources to S2S predictability

are not well quantified. Here we evaluate the subseasonal prediction skill of the Community Earth SystemModel, version 1

(CESM1), in the default version of the model as well as a version with the improved representation of stratospheric vari-

ability to assess the role of an improved stratosphere on prediction skill. We demonstrate that the subseasonal skill of

CESM1 for surface temperature and precipitation is comparable to that of operational models. We find that a better-

resolved stratosphere improves stratospheric but not surface prediction skill for weeks 3–4.

SIGNIFICANCE STATEMENT: There is a growing demand in society for understanding sources of predictability on

subseasonal to seasonal time scales. In this work we demonstrate that the CESM1 research Earth system model can be

utilized as a subseasonal prediction model and show that its subseasonal prediction skill is comparable to that of op-

erational models. We also show that the inclusion of a well-resolved stratosphere does not improve the subseasonal

(week 3–4 averaged) forecast of temperature and precipitation at the surface.

KEYWORDS: Stratospheric circulation; Ensembles; Forecast verification/skill; Hindcasts; Seasonal forecasting; Tropical

variability

1. Introduction

There is growing demand and interest in subseasonal predic-

tion, specifically in the three to four weeks window, that would fill

the gap between weather prediction (up to 14 days) and seasonal

forecasts (3–6 months) (Robertson et al. 2015). Subseasonal pre-

diction of extreme events such as heat waves, droughts, heavy

rainfall, and cold outbreaks has applications in a variety of society-

relevant sectors including agriculture, energy, watermanagement,

and public health (White et al. 2017). With the growing demand

for improved subseasonal forecasts, there is also a need for better

understanding of potential sources of predictability on sub-

seasonal time scales (Mariotti et al. 2020; NAS 2016).

Predictability on subseasonal time scale is believed to come

from processes that vary slowly relative to the atmosphere and

interactions related to soil moisture, snowpack, ocean heat con-

tent and sea ice (NAS 2016). Modes of variability such as El Niño
Southern Oscillation (ENSO) and the Madden–Julian oscillation

(MJO) (NAS 2016), as well as the stratosphere (see Butler et al.

(2019) for detailed review) are additional predictability sources. In

particular, the stratosphere is believed to lead to improved surface

prediction via extreme stratospheric polar vortex events, such as

major sudden stratospheric warmings (SSWs) (e.g., Baldwin and

Dunkerton 2001; Baldwin et al. 2003). Marshall and Scaife (2010)

showed one week of extended SSW prediction skill in a high-top

version of the model in comparison to a low-top version. Also the

stratospheric quasi-biennial oscillation (QBO) has been shown

to influence subseasonal predictability via the modulation of

the MJO (e.g., Yoo and Son 2016; Son et al. 2017; Nishimoto and

Yoden 2017). Nie et al. (2019) have shown that stratospheric

initial conditions contribute to the predictability of the North

Atlantic Oscillation (NAO) and the Arctic Oscillation (AO).

Although the stratosphere has been demonstrated to influence

tropospheric variability, it is difficult to disentangle its contribu-

tion to subseasonal predictability from other predictability sour-

ces. The international subseasonal-to-seasonal (S2S) research

project (Vitart and Robertson (2018) and the more recent

Subseasonal Experiment (SubX) (Pegion et al. 2019) offer very

extensive databases of subseasonal predictions. However, it

can be difficult to isolate sources of predictability using these

databases, including the stratosphere, as due to the operational

nature of most participating models these databases are largely

Supplemental information related to this paper is available at the

Journals Online website: https://doi.org/10.1175/WAF-D-20-0029.s1.

Corresponding author: Jadwiga H. Richter, jrichter@ucar.edu

DECEMBER 2020 R I CHTER ET AL . 2589

DOI: 10.1175/WAF-D-20-0029.1

� 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 07:00 PM UTC

https://doi.org/10.1175/WAF-D-20-0029.s1
mailto:jrichter@ucar.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


ensembles of opportunity. Using the S2S database, Domeisen

et al. (2019a,b) found that high-top prediction systems exhibit

higher stratospheric prediction skill; however, higher surface

prediction skill was difficult to demonstrate. The S2S and SubX

models’ setup vary vastly in terms of horizontal and vertical

resolutions, model lid heights, number of ensemble members,

reforecast dates and periods, varying initial conditions, etc.,

hence it is difficult to attribute improved skill to a particular

model feature. We evaluate here the effectiveness of CESM1

as a subseasonal prediction model and demonstrate the re-

search utility of this model in investigating the role of the

stratosphere to subseasonal prediction by comparing the de-

fault 30-level (30L) atmospheric configuration to the 46-level

(46L) stratosphere-resolving configuration.

CESM1 is the 6th generation climate model developed by

NCAR, preceded recently by Community Climate System

Model, v4 (CCSM4), primarily for studies of climate change

and climate variability. Recently CESM1 has been used in

studies of decadal prediction (Yeager et al. 2018) and seasonal

prediction through the NMME project (Kirtman et al. 2014).

The comparison of 30LCESM1 and 46LCESM1 presented

here is specifically designed to compare the role of the strato-

sphere on subseasonal prediction, since all of the forecast system

details, such as initialization, start dates, number of ensemble

members, are the same between the model versions. Since the

stratospheric phenomena such as the SSWs and QBO are im-

proved in the 46L version of CESM1, we expect to see improved

subseasonal prediction skill of those and related phenomena in

this version of the model as compared to the 30L version.

2. Model and simulations

a. Model description

We use here the default 30LCESM1 and 46LCESM1, with the

Community Atmosphere Model, version 5 (CAM5) as its at-

mospheric component, interactive ocean (LANL Parallel Ocean

Program, version 2) (Danabasoglu et al. 2012;Hurrell et al. 2013),

and the Community Land Model, version 4 (CLM4) (Lawrence

et al. 2011). CAM5 and the physics are fully described in Neale

et al. (2012). CAM5 used for this study utilizes the spectral ele-

ment dynamical core (Dennis et al. 2012) with horizontal reso-

lution of;100km. The 30LCAM5 and 46LCAM5have identical

levels below 100 hPa, and 16 additional levels in 46LCAM5 raise

the model top from 2 to 0.3 hPa and allow for a better repre-

sentation of stratospheric dynamics. The vertical grids for the two

model versions are shown in Fig. S1 of Richter et al. (2015). Both

model versions utilize the same tropospheric CAM5 physics. In

addition, 46LCAM5 includes a parameterization of nonoro-

graphic gravity waves based on Richter et al. (2010) and Richter

et al. (2014). The 46LCAM5 has a nearly identical climate in the

troposphere as 30LCAM5, but an improved representation of the

stratosphere as compared to 30LCAM5. In particular, the main

differences between 46LCAM5 and 30LCAM5 are in the simu-

lation of the QBO and SSWs.

b. AMIP simulations

As CESM1 is primarily used to study Earth’s climate, mul-

tidecadal simulations have previously been carried out with

this model. We utilize here ‘‘AMIP’’ simulations, in which

CESM1 was run with observed evolution of global monthly sea

surface temperatures and sea ice conditions as lower boundary

conditions from Hurrell et al. (2008) and observed external

radiative forcings (solar, greenhouse gases, volcanoes, and

aerosols) for the period of 1952–2001. A 10-member ensemble

of these simulations was carried out (Richter et al. 2015). To

compare the AMIP climatology to the climatology of the re-

forecasts, one of the ensemble members for 30LCAM5 and

46LCAM5 was extended here until 2015.

AMIP simulations clearly demonstrate the key differences

between the 46-level and 30-level configurations of CESM1. In

30LCAM5 AMIP simulations, the zonal mean wind above

100 hPa is persistently easterly (between 25 and 210m s21)

and the observed westerlies are never reproduced, while

46LCAM5 produces an internally generatedQBOwith amean

period of 27 months, very similar to the mean observed period

of 28 months (see Fig. S1 in the online supplemental material).

The QBO in 46LCAM5 is somewhat deficient compared to

observations, with the easterly phase a little weak, and neither

phase reaching down to 100 hPa as seen in ERAI; however, the

overall representation of theQBO in 46LCAM5 is significantly

improved over 30LCAM5. The SSW frequency in 46LCAM5

and 30LCAM5 AMIP simulations are 0.6 and 0.55 yr21, respec-

tively, based on the 10-member ensemble of AMIP simulations

from 1952 to 2001 shown in Richter et al. (2015), and are similar

to reanalysis (Charlton and Polvani 2007). However, the

seasonal distribution of SSWs differs between the two models

(Fig. S2). In 30LCAM5 the DJF SSW frequency is less than

0.2 yr21, whereas in 46LCAM5 SSW frequency is 0.36, which is

very close to the frequency of ;0.4 found in observations.

c. S2S reforecasts

S2S reforecasts are carried out with the fully coupled version

of 30LCESM1 and 46LCESM1 following the SubX protocol

(Pegion et al. 2019) with weekly starts from 1999 to 2015.

Hindcasts are initialized on Wednesdays, starting with

6 January 1999, with the exception of years in which

29 February occurs on a Wednesday, as CESM1 does not

have leap years. In those instances the forecasts are initialized

on Tuesday, 28 February. Reforecasts are carried out for a

period of 45 days. All reforecasts consist of 10 ensemble

members for both the 30LCESM1 and 46LCESM1. Output of

hindcasts follows the SubX protocol (Pegion et al. 2019) and

consists of daily means of selected variables. Some of the daily

averages are created from all model timesteps, whereas others

are averages of instantaneous 6-hourly output. The distinction

is made based on NOAA/CPC guidelines.

CLM4 was used to produce land initial condition files for

every day from 1979 to the end of 2015 that reflect the observed

surface state and fluxes. This was done by performing a 60-yr

stand-alone CLM4 simulation forced with 6-hourly precip-

itation, temperature, specific humidity, wind speed, lowest

atmospheric level pressure, and incoming longwave and

shortwave radiation from the Climate ResearchUnit–National

Centers for Environmental Prediction joint dataset (CRU–

NCEP; downloaded from http://dods.ipsl.jussieu.fr/igcmg/

IGCM/BC/OOL/OL/CRU-NCEP) from 1950 to 1979. To
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achieve the desired 60-yr spinup period, the 30-yr CRU-NCEP

(1950–79) forcing was iterated over twice. In the first cycle, soil

states were initialized with a uniform value globally and the

land surface was forced with CRU–NCEP reanalysis from 1950

to 1979. The process was then repeated, but with the land

properties at the beginning of the second cycle starting from

those taken from the final time step of the first spinup cycle.

This process ensured that soil moisture and temperature sta-

bilized with respect to the 1950–79 climate state. After com-

pleting the second spinup cycle the CLM4 simulation forced

with CRU–NCEP was continued from 1979 to 2015 and restart

files were output every day.

Ocean and sea ice initial conditions come from a forced

ocean-sea ice configuration of CESM1 that employs adjusted

Japanese 55-year reanalysis project (JRA-55) state fields and

fluxes (referred to as JRA55-do forcing; Tsujino et al. 2018) as

surface boundary conditions. This simulation was spun up

through five consecutive cycles of 1958–2009 forcing, with the

last cycle extended through 2016. The simulation followed the

protocols of the OMIP-2 component of the Coupled Model

Intercomparison Project 6 (CMIP6; Griffies et al. 2016; Tsujino

et al. 2020), but was an early test of the protocol and hence was

not contributed to CMIP6. Preliminary analysis of official

OMIP-2 contributions (Tsujino et al. 2020) indicates that the

historical ocean and sea ice states obtained are generally as

good or better than traditional CORE-II-forced simulations

(Griffies et al. 2014), such as the CORE-II ocean–sea ice re-

construction used to initialize the CESM decadal prediction

system (Yeager et al. 2018). In particular, the wind fields in the

tropical Pacific are substantially better in JRA55-do than in

CORE-II (Yeager et al. 2018), leading to more realistic trop-

ical Pacific thermocline and SST variability. Furthermore, the

JRA55-do dataset is updated to near–real time, permitting

consistent ocean and sea ice state estimation from the late

1950s up to the present.

The atmospheric component of the model was initialized

using ERA-Interim reanalysis (Dee et al. 2011) interpolated to

CAM5’s grid. For climate and decadal prediction, ensemble

spread in CESM is typically generated using a very small,

round-off level, temperature perturbation in the initial atmo-

spheric condition (e.g.,Kay et al. 2015). Such amethod does not

generate enough spread on the subseasonal time scale (as will

be demonstrated below), hence for S2S reforecasts the en-

semble spread was generated by implementing the random

field (RF) perturbation initialization described in Magnusson

et al. (2009) and applied to the atmospheric initial state. RF

perturbation involves taking a difference between two random

initial conditions, from the same season as the starting month

of the simulation, scaling it by a perturbation scaling factor

(PSF), and adding and subtracting it from the initial state of the

model. Because the perturbations are taken between two prior

model states, they are in approximate flow balance. Each

random difference therefore generates two ensemble mem-

bers, and the method can be applied to generate as many en-

semble members as are needed. Magnusson et al. (2009)

demonstrated that RF initialization is as effective in generating

model spread as several other, more sophisticated methods,

such as the ensemble transform and singular vectors. We adopt

here the Magnusson et al. (2009) approach by generating 500

initial condition perturbations for each month of the year from

daily initial conditions output from the AMIP simulations.

For each reforecast date, five initial condition perturbations

are randomly chosen out of the 500, scaled by a PSF of 0.15,

and added/subtracted to the ERAI initial state to generate

the 10 initial conditions used to initialize the ensemble

members for the S2S reforecasts. Figure 1a compares the

root-mean-square error (RMSE) to the ensemble spread or

the ensemble standard deviation of 500-hPa geopotential

height anomalies for hindcasts started with the simple tem-

perature perturbation method and the RF perturbation

method implemented in CESM1. The figure is shown for

46LCESM1, but it is nearly identical for the 30LCESM1. The

figure shows averages over four 45-day hindcasts, each one

performed with 10 ensemble members. Only four start dates

are averaged as simulations with the simple temperature

perturbation were only performed for those dates to dem-

onstrate the difference in spread. The model initial condition

interpolated from ERAI reanalysis consists of the zonal and

meridional wind, temperature, specific humidity, surface ge-

opotential and surface pressure. All other variables are de-

rived by the model. Time ‘‘0’’ in Fig. 1 shows the first

available model output after the model has adjusted to the

initial condition. Values at subsequent timesteps represent

the daily mean.

Figure 1 clearly illustrates that the simple temperature

perturbation method does not provide enough ensemble

spread between days 14–25, a key period for subseasonal pre-

diction as the standard deviation of 500-hPa geopotential

height (Fig. 1, solid blue curve) is much lower than the RMSE

(Fig. 1, blue dashed curve) for that time period. RMSE should

match the ensemble spread if the system is statistically con-

sistent (e.g., Leutbecher and Palmer 2008). The ensemble

spread using the RF method is significantly bigger (Fig. 1, red

solid line) and closer to RMSE (Fig. 1, red dashed line) in the

first three weeks of the hindcasts as compared to the small

temperature perturbation method; however, the ensemble is

still underdispersed. This level of underdispersiveness is a

common feature of present day S2S models (e.g., Robertson

et al. 2015). Figure 1 also shows that the RMSE of Z500

anomalies, even in the first few days of the reforecasts is quite

large despite the fact that the verifying reanalysis is the same as

reanalysis used for initialization. This initialization shock is a

common problem among S2S systems that do not start from

reanalysis created with their own modeling system and un-

dergo interpolation and model adjustment in the first model

time step.

Ensemble spread is also important to consider in the

stratosphere, especially when looking at stratospheric influ-

ences on subseasonal prediction. Figure 1b shows the time

evolution of the zonal mean zonal wind at 608N, 10 hPa for a

1 January 2013 reforecast using the simple temperature per-

turbation initialization method and the RF perturbation

method. When the simple temperature perturbation method is

used, there is little difference between the ensemble members

(thin blue lines) until day 13 of the forecast, and the spread

between ensemble members is quite small through week 4 of
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the forecast as indicated by the blue line in Fig. 1c, which re-

mains at;0m s21 through day 10 of the reforecasts. When the

RF perturbation method is applied, there is visible spread

between the ensemble members (Fig. 1b, orange thin lines)

from the beginning of the reforecast and the ensemble spread,

as illustrated by the standard deviation of U zonal wind at

608N, 10 hPa (Fig. 1c, red line) is much greater between days 15

and 28, as compared to the ensemble spread using simple

temperature method.

3. Subseasonal prediction skill

We examine here the subseasonal prediction skill in the S2S

reforecasts at the surface (temperature and precipitation) as

well as in the stratosphere.We also examine the prediction skill

of key modes of variability, the NAO and the MJO.

a. Surface temperature and precipitation

The week 3–4 (day 15–28 averaged) anomaly correlation

coefficient (ACC) for 2-m temperature and precipitation over

all world land areas for 30LCESM1 is shown in Figs. 2 and 3.

CPC Global Daily Temperature dataset and NOAA CPC

Global Daily Unified Gauge-Based Analysis of Precipitation

dataset, both over land at the horizontal resolution of 0.58 3
0.58, are used as verifying observational datasets. The average

daily temperature is calculated as the average of the daily

maximum andminimum temperature. For each season, ACC is

calculated from anomalies from climatology averaged over

days 15–28 for hindcasts that begin during a given season. Very

similar ACC values are derived when using ERAI reanalysis as

the verifying dataset (not shown). ACC values are shown in

colors when they are significantly different from zero at the 5%

level (i.e., ACC . 0.2). The significance level is arrived at by

considering that for each season there are 13 start dates per

year and we examined 17 years, hence a total of 221 samples.

We assume a 2-week decorrelation time, and hence the number

of independent samples is 110.5. There are hence 108 degrees

of freedom, leading to a correlation equal or greater than 0.2

being significant at the 5% level using a two-tailed Student’s

t test (Wilks 2011). Bottom panels of Figs. 2 and 3 show the

ACC of persistence forecasts. Top panels of Fig. 2 show that

prediction skill of week 3–4 surface temperature is much higher

in DJF than in JJA. In DJF, over all the land areas except for

Greenland, ACC for surface temperature is higher than 0.2,

and in most areas higher than 0.3. ACC exceeding 0.5 is a

common threshold for useful skill (e.g., Murphy and Epstein

1989; Jones et al. 2000). ACC values greater than 0.5 inDJF are

found in South East Asia and the northern part of South

FIG. 1. (a) Ensemble mean root-mean-square error (RMSE;

dashed lines) and ensemble spread (or ensemble standard devia-

tion; solid lines) for 500-hPa geopotential height anomalies for

46LCESM1 reforecasts using a temperature perturbation (blue

lines) and using the RF method (red lines) to generate ensemble

members. Variables are calculated over 10 ensemble members of

45-day-long simulations with start dates of 6 Nov 2012, 5 Dec 2012,

1 Jan 2013, and 5 Feb 2013 (total of 40 simulations). (b) Zonalmean

zonal wind at 608N, 10 hPa for a reforecast with 46LCESM1 started

 
on 1 Jan 2013 using the temperature perturbation method (light

blue lines for individual ensemble members and dark blue for en-

semble mean) and RF method (orange lines for individual en-

semble members and red line for ensemble mean). Black curve

shows ERAI observations. (c) Standard deviation of the zonal

mean zonal wind at 608N, 10 hPa for the same simulations as in (b)

(blue: temperature perturbation; red: RF initialization method).
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America. In JJA, areas with highest week 3–4 prediction skill

are western Africa, and northern part of South America. Skill

in eastern Australia and the southeastern United States is also

higher than in most places. In JJA, CESM1 shows the largest

2-m temperature ACC in central Africa and northern part of

South America, and part of Australia. There is little skill

during this season over Eurasia and large portions of North

America. For both DJF and JJA, ACC of 30LCESM1 greatly

exceeds that of a persistence except over parts of Greenland.

As previous studies have found, precipitation prediction for

week 3–4 is quite difficult. ACC in most areas of the world

remains below 0.2. In DJF small regions of central Asia,

western United States, western and northernmost Australia,

and northern South America exhibit most skill (Fig. 2c). In

JJA, precipitation skill is lower than 0.2 over the majority of

land areas, except for southeastern Australia, and eastern

South America. Similarly to 2-m temperature, the persistence

skill for precipitation is typically smaller than that of

30LCESM1, with the exception of precipitation over parts of

Greenland, which has an ACC of ;0.4 in the persistence

forecast. ACC was also calculated for 46LCESM1, however,

the difference between surface temperature and precipitation

skill calculated over the hindcast period for the two models is

negligible (differences of less than 0.05 over majoring of the

globe), and the ACC maps are indistinguishable from each

other (not shown). This suggests that despite the improved

representation of stratospheric variability in 46LCESM1, the

seasonally averaged week 3–4 predictive skill of the two

CESM1 versions is virtually the same.

The 2-m temperature and precipitation skill of 30LCESM1

and 46LCESM1 averaged over the globe andNorth America is

compared to seven SubX models in Fig. 4 for four seasons:

September–October–November (SON), December–January–

February (DJF), March–April–May (MAM), and June–

July–August (JJA). Figures 4a and 4c illustrate that the 2-m

temperature skill of CESM1 for weeks 3–4 is comparable to the

NOAA operational model, CFSv2, and higher than the skill of

most other models contributing to SubX except for in the JJA

season. We arrive at a similar finding for other areas of the

world (not shown). Figures 4a and 4c also show that the ACC

for 2-m temperature for 30LCESM1 and 46LCESM1 is very

similar calculated over the reforecast period, again indicative

FIG. 2. (a),(c) DJF and (b),(d) JJA 2-m (2m) temperature ACC weeks 3–4 for (top) 30LCESM1 and (bottom) persis-

tence. In (c) and (d) purple contours denote regions for which persistence ACC exceeds the ACC of 30LCESM1.
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of no overall surface prediction skill gained from the addition

of a better resolved stratosphere. Pegion et al. (2019) discussed

that the predictive skill of a multimodel ensemble is typically

higher than of individual models. The skill of the SubX ensemble

is shown in Fig. 4 as MME7. When both versions of CESM1 are

added to the multimodel mean, the skill of the multimodel en-

semble further increases as illustrated byACCvalues forMME9.

Figures 4b and 4d show the ACC for precipitation averaged

over the globe and North America for CESM1 and SubX

models. Over North America, there is very little skill in the

week 3–4 forecast. The ACC is over 0.1 only for DJF for the

NOAA CFSv2 model, and the multimodel mean of the seven

SubXmodels, and the multimodel mean including SubXmodels

and CESM1. The values are a little higher when the entire globe

is considered. Although there are differences in ACC between

30LCESM1 and 46LCESM1 inMAM, we do not examine these

further due to the overall low predictive skill of precipitation.

b. Comparing forecast skill

The sign test is one way to compare forecast skill and is

considered a ‘‘fair’’ test in the sense that there is no expectation

one model will do better than another model (DelSole and

Tippett 2014). The Brier skill score (BSS) for each forecast in

the reforecast period was compared between CFSv2 and

30LCESM1 and 46LCESM1, between CFSv2 and each indi-

vidual SubX model, as well as between CFSv2 and the

SubXMME. If CFSv2 had the better BSS, a11 was assigned. If

CFSv2 had a lower BSS, a 21 was assigned. This process was

repeated for all of the forecasts in the reforecast database and

the cumulative count of the results can be summarized as

probabilities for providing a skillful forecast. Figure 5 shows

the probability of providing a skillful forecast (given as a per-

centage on the y axis) for 30LCESM1 and 46LCESM1, each

individual SubXmodel, and the SubXMME, relative to CFSv2.

The percentages for models marked by blue bars are consid-

ered statistically significantly likely to provide a more skillful

forecast and the remaining values indicate that those models

are equally or less skillful, relative to CFSv2. These results are

statistically significant at the 95% confidence interval and show

that 30LCESM1 (46LCESM1) has a 62% (65%) chance of

providing a more skillful temperature forecast than CFSv2,

demonstrating that this system is a reliable tool for subseasonal

FIG. 3. As in Fig. 2, but for precipitation.
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predictability research, often exceeding the operational fore-

cast. Note that the number of ensemble members used by each

modeling center is different (e.g., only 4 for CFSv2), which can

affect the skill of the forecasts.

c. Stratosphere

We expected the 46LCESM1 to have higher prediction skill

than 30LCESM1 due to a better-resolved stratosphere; how-

ever, so far we have not seen evidence of this. We compare

here the prediction skill of the dominant modes of strato-

spheric variability and stratospheric–tropospheric coupling,

the QBO, and the NH winter polar vortex along with SSWs in

30LCESM1 and 46LCESM1 to see whether the stratosphere

itself is predicted better in the 46LCESM1. We use the ERAI

dataset (Dee et al. 2011) for verification. We expect the pre-

dictability of the QBO to be improved in 46LCESM1 due to

the ability of that model to produce a QBO in a climate sim-

ulation. SSWs arise from the breaking of planetary waves in the

polar vortex (e.g., McIntyre 1982, Baldwin et al. 2018) and their

occurrence, although still not fully understood, depends both

on the stratosphere and troposphere (Hitchcock and Haynes

2016). We expect the predictability of SSWs to be improved in

46LCESM1 as compared to 30LCESM1, especially between

December and January, as in AMIP simulations the SSW

frequency is more realistic in that model.

We define the QBO index as the zonal mean zonal wind

anomalies from climatology at 50 hPa averaged between 58S

and 58N. Themean zonal mean wind at 50 hPa between 58S and
58N is approximately 1m s21 hence there is little difference as

to whether the QBO is defined on the raw zonal mean wind or

anomalies. We calculate the ACC for all years as well as for

QBOwesterly andQBOeasterly dates separately (Fig. 6). This

is done by calculating the ACC from daily data for forecast

lead of 1–45 days for either all the available start dates, or only

the dates during which the QBO was in the westerly (easterly)

phase during initialization. QBO westerly (easterly) years are

defined as years in which the zonal mean wind at 50 hPa are

above (below) 0m s21. Different thresholds to define the QBO

phase yield similar results (not shown). Figure 6a shows that

the overall prediction skill of the QBO on the subseasonal time

scale is quite high, with the ACC for all QBO phases at day 30

at 0.97 for the 46LCESM1 and 0.94 for 30LCESM1. Due to the

lack of internally generatedQBO in 30LCESM1, we expect the

QBO to be predicted better in the 46LCESM1, which it is

(Fig. 6a). However, 30LCESM1, despite faster decay of QBO

amplitude, still has very high skill (ACC. 0.9) throughout the

entire forecast period. This implies that the initialized state of

the QBO persists throughout the forecast on a subseasonal

time scale and remains close to observations regardless of

whether the model used is capable of internally generating a

QBO. The prediction skill of the QBO by CESM1 varies de-

pending on its phase. Figure 6b shows that the prediction skill

of the QBO is lower in the westerly phase than in the QBO

easterly phase especially for 30LCESM1: the ACC is ;0.96

FIG. 4. ACC for week 3 and 4 (day 15–28) averaged (a),(c) 2-m temperature and (b),(d) precipitation averaged (top) over the globe and

(bottom)NorthAmerica for the SubXmodels (CCSM4, FIM,NESM,GEOS,GEFS, GEM,CFSv2), multimodel mean of the seven SubX

models (MME7), 30LCESM1, 46LCESM1, and multimodel mean of SubX models and both CESMmodels (MME9) averaged over four

seasons: SON (light blue), DJF (blue), MAM (yellow), and JJA (orange). SubX models are described in Pegion et al. (2019).
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(0.9) for 46LCESM1 (30LCESM1) in QBOwesterly and;0.98

(0.97) in QBO easterly at day 30. The 30CESM1 hence has

difficulties sustaining the westerly phase of the QBO. Our

findings on the prediction skill of theQBOon subseasonal time

scale are consistent with a recent study by Lim et al. (2019) who

found a 1-month QBO correlation between 0.95 and 1.0 for

high-top models, and a lower prediction skill 0.85–0.95 for

models with a lower top and poor representation of the

stratosphere.

Figure 7 shows the ACC of DJF zonal mean wind at 608N
and 10 hPa. Similarly to the QBO, the ACC was calculated for

forecast lead days 1–45 for each hindcast start date during the

DJF season. The figure shows that the strength of the polar

vortex winds averaged over the entire winter season is pre-

dictable at 34 days in 46LCESM1 and only out to 28 days in

30LCESM1. This higher prediction skill for the NH polar

vortex in 46LCESM1 is also found in other seasons (not

shown). During the reforecast period between 1999 and 2015

there were 11 SSWs in DJF between 1999 and 2015 (Table 1).

Tripathi et al. (2016) showed that all models examined were

able to predict the 2012/2013 winter warming by all ensemble

members when initialized 5 days before the central warming

date of the event, and 50% to 100% of the ensemble mem-

bers considered were able to predict an SSW when initial-

ized 10 days before the observed event. In the CESM1

reforecast set, the initial day of the forecast is most of the

time a Wednesday, hence forecasts closest to each SSW

event are started either 2–6 days prior (see Table 1), and

since the forecasts are ran weekly, initializations prior to

that are 9–13 days before each SSW event, making the as-

sessment of SSW predictability difficult to compare. Table 1

summarizes the SSWs examined in CESM1 and reforecast

initialization dates relative to the central warming dates,

which are defined as the dates on which the zonal mean zonal

wind at 608N and 10 hPa becomes easterly. Figure 8 summa-

rizes the prediction skill of these SSWs for 30LCESM1 and

FIG. 5. Percent-chance a model will have a more, less, or equally skillful 2-m temperature forecast relative to the CFSv2. Results are

based on comparing Brier skill scores and are significant at the 95% confidence interval. Values in blue bars indicate that the model has a

statistically significant chance of providing amore skillful forecast than CFSv2. The 30LCESM1 (46LCESM1) has a 62% (65%) chance of

providing a more skillful temperature forecast than CFSv2.

FIG. 6. Daily correlation coefficient of the quasi-biennial oscillation (QBO) between model and observations for 30LCESM1 and

46LCESM1 for (a) all dates, (b) QBO westerly dates, and (c) QBO easterly dates. The QBO is defined as the zonal mean zonal wind

anomalies from climatology at 50 hPa averaged between 58S and 58N.
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46LCESM1. The time evolution of the ensemble mean zonal

mean zonal wind at 608N and 10 hPa for the individual events is

shown in Fig. S3 and shows that they are in general similar

between 30L and 46L CESM1. Figure 8 shows the number of

individual ensemble members that predict a SSWwithin 3 days

of the observed SSW.While themajority of ensemblemembers

typically capture SSWs for initializations of 5 days or less be-

fore the central warming date, only 30% of the ensemble

members are able to predict a SSW 9–13 days out. SSW

prediction skill decreases further for initialization dates ex-

ceeding 15 days before the events, except for the 26 February

1999 and 22 February 2008 SSWs, in which 40%–50% of the

ensemble members predict an SSW (Fig. S3). Predictability of

SSWs in CESM1 is broadly similar to previous studies

(Tripathi et al. 2016; Marshall and Scaife 2010). Figure 8

shows no clear evidence that 46LCESM1 predicts SSWs any

better than 30LCESM1: in some instances an SSW event is

predicted better by 30LCESM1 and in some by 46LCESM1.

This suggests that the improved representation of the strato-

sphere in 46LCESM1 does not necessarily lead to better pre-

diction of SSW events, which could partially explain why there

is not clear difference in surface prediction skill between the

two models.

d. NAO and MJO

The NAO and the MJO are two modes of variability that

have been shown to be affected by stratosphere–troposphere

coupling. We examine these in 30LCESM1 and 46LCESM1 to

determine if the improved representation of the stratosphere

lead to changes in prediction skill of the NAO and the MJO.

The NAO is a key driver of winter climate and associated ex-

tremes over Europe and North America (Hurrell 1995; Scaife

et al. 2008). Until recently, long-range forecast systems showed

low levels of skill in predicting fluctuations in the NAO at

seasonal lead times (e.g., Johansson 2007); however, recent

seasonal forecasting systems have demonstrated significant

skill in predicting theNAOwhen initialized amonth before the

beginning of winter (Scaife et al. 2014a,b; Riddle et al. 2013;

Stockdale et al. 2015). Pegion et al. (2019) showed that the

individual SubX models, as well as their multimodel mean,

exhibit ACC. 0.5 for the NAO through the week 2 forecasts;

however, the prediction skill drops off quickly after that.

Figure 9 shows the ACC for the NAO for 30LCESM1 and

46LCESM1. The NAO index was obtained by first calculating

EOF analysis of ERA-Interimmonthly (December–February)

sea level pressure anomalies over the Atlantic sector (208–
908N, 908W–608E) and treating the leading EOF pattern as the

NAO. The NAO index was then calculated by projecting the

SLP anomaly in the reanalysis and model onto the leading

EOF. Figure 9 shows that CESM1 has high NAO prediction

skill in week 1 and week 2 (ACC of ;0.95 and 0.75, respec-

tively). TheNAOprediction skill is;0.5 for week 3, and 0.4 for

week 4, exceeding the NAOprediction skill for that time frame

by other SubX models (not shown, see Pegion et al. 2019 for

figure). Although CESM1 exhibits high NAO skill, Fig. 9

shows clearly that there is no significant difference between

the overall NAO prediction skill between the 30LCESM1 and

46LCESM1.

TheMJO is the dominant mode of the tropical intraseasonal

variability and considered as the leading source of subseasonal

predictability in the tropics as well as in extratropics (e.g., Stan

et al. 2017). The MJO prediction skills, such as the anomaly

FIG. 7. Anomaly correlation coefficient (ACC) for DJF 10 hPa,

608N zonal mean zonal wind for 30LCESM1 (blue) and 46LCESM1

(red). Dashed line represents the ACC value of 0.5.

TABLE 1. Central date of SSWs that occurred in DJF between

1999 and 2015 and initial date of three reforecast dates (R1,R2, and

R3) that were initiated prior to the SSW. Reforecasts dates are

shown in days relative to each SSW date.

SSW date R1 R2 R3

1 26 Feb1999 216 29 22

2 11 Feb2001 218 211 24

3 30 Dec 2001 218 211 24

4 18 Jan 2003 217 210 23

5 5 Jan 2004 219 212 25

6 21 Jan 2006 217 210 23

7 24 Feb 2007 217 210 23

8 22 Feb 2008 216 29 22

9 24 Jan 2009 217 210 23

10 9 Feb 2010 220 213 26

11 6 Jan 2013 218 211 24

FIG. 8. Summary of the prediction skill of SSWs for different

forecast initiations (individual SSW events are shown in Fig. S3).

Symbols indicate the number of ensemble members that predicted

an SSW event within 3 days from the actual observed event.

Different symbols are used to distinguish between the different

SSWs events and have no particular meaning. Blue (red) symbols

are for 30LCESM1 (46LCESM1). When the number of ensemble

members predicting SSW is the same in both models, the symbols

are black.
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bivariate correlation coefficient and the RMSE, are usually

defined by comparing the predicted and observed real-time

multivariate MJO indices (RMM;Wheeler and Hendon 2004).

With these measures, CESM1 is categorized in a high skill

group, where the MJO prediction skill is about 27 days defined

by the day when ACC reaches 0.5 (Kim et al. 2019). Each of 10

ensemble members from 30LCESM1 and 46LCESM1 were

combined in Kim et al. (2019) due to the very similar charac-

teristics and skill inMJO forecasts in the twomodels. Figure 10

compares the ACC and RMSE of ensemble mean RMM in-

dices in each model as a function of forecast lead days during

boreal winter verified against the RMM indices obtained by

ERAI. Details about the datasets and verification methods are

described in Kim et al. (2019). Here, we select MJO samples

when the amplitude of the RMM indices exceeds 1.0 at the

initialized date that ranges from October to March (total

262MJO samples). Although theACC (RMSE) in 30LCESM1

is slightly higher (lower) than 46LCESM1 up to about 5 weeks,

the difference of skill in the twomodels are negligible.We have

also examined the MJO prediction skill during QBO westerly

and during QBO easterly conditions separately. We found the

MJO skill to be similar in both QBO phases in the 30LCESM1

and 46LCESM1.

4. Model biases

Although CESM1 has overall good predictive skill on sub-

seasonal time scales, we compare here the biases in tempera-

ture, wind, and precipitation between an AMIP simulation

performed with CAM5 extended until the end of year 2015 and

S2S reforecasts for the 30LCESM1 to begin to understand how

inadequacies in model physics might be contributing to de-

creasing predictive skill. At the subseasonal time-scale model

biases could also be caused by an imbalance between the ocean

state and atmospheric state, and errors in the ocean initial state.

Surface temperature and precipitation biases for 46LCAMAMIP

simulation and 46LCESM1 reforecasts are indistinguishable from

those for 30LCAM AMIP and 30LCESM1 reforecasts, respec-

tively, andhence are not shown.The top two rows ofFig. 11a show

that CAM5 has a primarily cold bias over most of the land

areas except for central Eurasia, central United States, and

southeast South America, and southwest Australia in DJF. In

JJA, CAM5has a warm bias over themajority of Eurasia (up to

38C), and throughout most of the United States (up to 58C).
There are smaller biases, mostly cold, in South America,

Africa, and Australia in JJA. Figures 11b,c show the biases

calculated from S2S hindcasts for lead times of 1 week and

4 weeks, respectively. The patterns of temperature biases for

both DJF and JJA are very similar between the S2S hindcasts

and AMIP runs indicating that these come primarily from the

representation of atmospheric physics in CAM5. The magni-

tude of biases in the S2S hindcasts grows with time in the

majority of areas as indicated by differences between week 4

and week 1 (Fig. 11d), but the pattern of biases is established

in the first week of simulation.

Bottom two rows in Fig. 11 show precipitation biases in a

fashion similar to the temperature biases discussed above. In

DJF, the AMIP simulation shows primarily wet biases with

largest excess precipitation in southern Africa, majority of

Australia, the northwest United States and near the west coast

of South America. Dry biases are found in north-central South

Africa and near the southeast corner of the United States. The

pattern of biases is nearly perfectly reproduced in the S2S

hindcasts at lead times of week 1 and week 4 (Figs. 11b,c) with

the amplitude of biases at week 4 reaching the values of biases

in AMIP simulations. In JJA, wet biases in CAM5 AMIP

simulations are primarily in central Africa, and along the south

and eastern coast lines of Asia, as well as in the northwestern

United States. Dry biases extend through in the north–south

direction through the central United States, and in Northern

South America. Similarly to DJF, precipitation biases in the

S2S hindcasts exist in the same location by week 1. Magnitudes

of precipitation biases are comparable in magnitude to the

biases in AMIP simulations already at week 1 and do not grow

much more especially in DJF.

Our findings on the similarity of biases in climate-length

simulations and in shorter forecasts are in agreement with

previous similar studies. For example, Xie et al. (2012) exam-

ined systematic errors in moist-process related fields and

FIG. 9. ACC of the weekly mean NAO at increasing lead times

during NDJFM for 30LCESM (blue bars) and 46LCESM (gray

bars). Error bars indicate the 5% and 95% statistical levels based

on bootstrapping. NAO is calculated by projecting the 1000-hPa

geopotential height anomaly onto the NDJFM monthly leading

EOFpattern over theNorthAtlantic region (208–908N, 908W–608E).

FIG. 10. MJO prediction skill for 30LCESM1 (blue) and

46LCESM1 (red) hindcasts initialized with strong MJO events

during boreal winter (ONDJFM). The prediction skill is evaluated

based on the anomaly correlation coefficient (ACC; solid lines) and

root-mean-squared error (RMSE; dashed lines) between the

model and observation RMM indices.
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FIG. 11. (top rows) Temperature and (bottom rows) precipitation biases (model minus observations) calculated from (a) AMIP sim-

ulations with 30LCAM5, (b) 30LCESM1 S2S hindcasts week 1, (c) 30LCESM1 S2S hindcasts for week 4, and (d) S2S hindcasts week 4–

week 1. Biases are shown for winter (DJF) in the first and third row and summer (JJA) in the second and fourth row.Observed data for 2-m

temperature over land is the CPC daily temperature dataset with horizontal resolution of 0.58 3 0.58. For precipitation over land, the CPC
Global Daily Precipitation dataset (0.58 3 0.58) is used (Xie et al. 2007; Chen et al. 2008). Verification datasets are regridded to the coarser

SubX resolution. Comparisons are for the time period between 1999 and 2015.
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surface temperature and has shown that a strong correlation

exists between hindcasts errors and climate errors in CAM4

and CAM5. Some of the errors, for example in tropospheric

temperature, water vapor, and precipitation develop quite fast

and were apparent in just the day 2 hindcasts, suggesting that

these errors are likely a result of model parameterization er-

rors. Ma et al. (2014) examined the correspondence between

short- and long-term systematic errors in five general circula-

tion models. Their analysis showed that most systematic errors

of precipitation, clouds, and radiation processes in the long-

term runs were present by day 4 in the short-term hindcasts in

all models. In addition, the amplitude of the biases was com-

parable to that of long-term biases within a few days, again

suggesting that it is the fast-physics that contribute most to

the biases.

5. Summary and future directions

We have used here the Coupled Earth System Model

(CESM1), typically used for studies of climate change and

variability to study subseasonal prediction. We have per-

formed two sets of S2S reforecasts with CESM1, one with the

default 30-level and a 46-level version with an improved rep-

resentation of the stratosphere, in particular with a better

representation of SSWs and the QBO. Each hindcasts set fol-

lowed the SubX protocol with weekly initializations from 1999

to 2015 and consisted of 10 ensemble members in each

reforecast.

We have shown that surface temperature and precipitation

prediction skill of CESM1 on subseasonal time scales (weeks

3–4) is comparable to the skill of operational S2S models de-

spite the relatively simple initialization techniques and lack of

data assimilation. Furthermore, the addition of CESM1 to the

ensemble of SubX models raises the skill of the multimodel

ensemble.

We hypothesized that an inclusion of a better resolved

stratosphere would lead to improved subseasonal prediction

skill. The 46-level CESM1 shows a higher prediction skill than

the 30-level CESM1 of stratospheric variables, including polar

vortex winds and QBO. However, there is no clear improve-

ment from using the higher-top model on the time scales of

3–4 weeks at the surface. The predictability of SSWs, theNAO,

and the MJO is also nearly the same in both versions of the

model. In addition Kim et al. (2019) showed that there is no

difference between the prediction skill of the MJO between

QBOE and QBOW phases in these two model versions. This

could be in part due to the fact that theQBOeven in the 46-level

CESM1 does not reach sufficiently down into the lower strato-

sphere, and hence the observed influences of the QBO on the

MJO are not reproduced, or the mean state of the MJO in

CESM1 is not reproduced well enough to begin with, and hence

the influence of the QBO is not noticeable. Consistent with our

study, Domeisen et al. (2019a) found that high-top models have

higher subseasonal skill in the stratosphere compared to low-top

models. Domeisen et al. (2019b) also found that despite the

significant surface impact of the stratosphere, enhanced pre-

dictability of surface temperature linked to weak and strong

vortex events was difficult to demonstrate.

The lack of improved surface prediction with the 46LCESM1

as compared to 30LCESM1 does not mean that the strato-

sphere is not important to surface prediction. As was demon-

strated here and in Kim et al. (2019), the mean stratospheric

state between weeks 3–4 of reforecasts is quite similar to the

initial condition in both versions of CESM1, and anomaly

correlation coefficients of stratospheric variables in both

models are high. This is due to the slow-varying nature of the

stratosphere. Hence although the stratospheric state is

predicted a little better in the 46-level version of CESM1, the

initial state of the stratosphere persists through the subseasonal

time scale in both versions of the model. As a result, the benefit

of a better resolved stratosphere does not translate to im-

provement in surface prediction skill. This is unlikely the case

on seasonal and longer time scales, as the stratospheric state

will depart from observations much faster in the low-top

model. In other words, since the stratosphere is slowly vary-

ing, especially the QBO, which has a time scale of;28 months,

the initial observed state of the stratosphere persists through-

out the duration of the subseasonal forecast window, regard-

less of the quality of the representation of the stratosphere.

This is likely the reason for the similarity in skill between the

two versions of CESM1. Last, in this work we showed that

week 1 biases of initialized hindcasts are the same as in mul-

tidecadal simulations with prescribed sea surface tempera-

tures, pointing to the fact that fast-physics parameterization

contributes most to the biases of the system.

Simulations with CCSM4 carried out as part of the SubX

project and the simulations carried out here with CESM1

demonstrate the utility of a community climate model as a

useful research framework for subseasonal prediction that

could be used by a broader community. The caveat being that

subseasonal hindcasts are very computationally expensive, and

the infrastructure of running the system is not trivial with

CESM1 and not easily transferable to individual users, and not

extendable to present day (due to initial condition issues for

what is now an outdated land model). However, at the time of

publication of this manuscript, S2S hindcasts are being carried

out with the latest version of CESM, CESM2 (Danabasoglu

et al. 2020), with the goal of providing the community a re-

search framework for subseasonal prediction research in-

cluding relevant datasets and infrastructure for performing

additional simulations that could help to understand sources

of predictability.
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